• Nara Loca

What Is Microplastic?

Microplastics are very small pieces of plastic that pollute the environment. Microplastics are not a specific kind of plastic, but rather any type of plastic fragment that is less than 5 mm in length according to the U.S. National Oceanic and Atmospheric Administration (NOAA). They enter natural ecosystems from a variety of sources, including cosmetics, clothing, and industrial processes.

Two classifications of microplastics currently exist. Primary microplastics are any plastic fragments or particles that are already 5.0 mm in size or less before entering the environment. These include microfibers from clothing, microbeads, and plastic pellets (also known as nurdles). Secondary microplastics are microplastics that are created from the degradation of larger plastic products once they enter the environment through natural weathering processes. Such sources of secondary microplastics include water and soda bottles, fishing nets, and plastic bags. Both types are recognized to persist in the environment at high levels, particularly in aquatic and marine ecosystems.

Additionally, plastics degrade slowly, often over hundreds if not thousands of years. This increases the probability of microplastics being ingested and incorporated into, and accumulated in, the bodies and tissues of many organisms. The entire cycle and movement of microplastics in the environment is not yet known, but research is currently underway to investigate this issue.


Primary Microplastics

Microplastics are common in our world today. In 2014, it was estimated that there are between 15 and 51 trillion individual pieces of microplastic in the world's oceans, which was estimated to weigh between 93,000 and 236,000 metric tons.

Primary microplastics are small pieces of plastic that are purposefully manufactured. They are usually used in facial cleansers and cosmetics, or in air blasting technology. In some cases, their use in medicine as vectors for drugs was reported. Microplastic "scrubbers", used in exfoliating hand cleansers and facial scrubs, have replaced traditionally used natural ingredients, including ground almonds, oatmeal, and pumice. Primary microplastics have also been produced for use in air blasting technology. This process involves blasting acrylic, melamine, or polyester microplastic scrubbers at machinery, engines, and boat hulls to remove rust and paint. As these scrubbers are used repeatedly until they diminish in size and their cutting power is lost, they often become contaminated with heavy metals such as cadmium, chromium, and lead. Although many companies have committed to reducing the production of microbeads, there are still many bioplastic microbeads that also have a long degradation life cycle similar to normal plastic.

Secondary Microplastics

Secondary plastics are small pieces of plastic derived from the breakdown of larger plastic debris, both at sea and on land. Over time, a culmination of physical, biological, and chemphotodegradation, including photodegradation caused by sunlight exposure, can reduce the structural integrity of plastic debris to a size that is eventually undetectable to the naked eye. This process of breaking down large plastic material into much smaller pieces is known as fragmentation. It is considered that microplastics might further degrade to be smaller in size, although the smallest microplastic reportedly detected in the oceans at present is 1.6 micrometres (6.3×10−5 in) in diameter. The prevalence of microplastics with uneven shapes suggests that fragmentation is a key source.


Depending on the definition used, nanoplastics are less than 1 μm (i.e. 1000 nm) or less than 100 nm in size. The existence of nanoplastics in the environment is under debate since detection, and quantification in environmental matrices remains a challenge. Speculations over nanoplastics in the environment range from it being a temporary byproduct during the fragmentation of microplastics to it being an invisible environmental threat at potentially high concentrations. The presence of nanoplastics in the North Atlantic Subtropical Gyre has been confirmed and recent developments in Raman spectroscopy and nano-fourier-transform infrared (nano-FTIR) technology are promising answers in the near future regarding the nanoplastic quantity in the environment.

Nanoplastics are thought to be a risk to environmental and human health. Due to their small size, nanoplastics can cross cellular membranes and affect the functioning of cells. Nanoplastics are lipophilic and models show that polyethylene nanoplastics can be incorporated into the hydrophobic core of lipid bilayers. Nanoplastics are also shown to cross the epithelial membrane of fish accumulating in various organs including the gall bladder, pancreas, and the brain. Little is known on adverse health effects of nanoplastics in organisms including humans. In zebrafish, polystyrene nanoplastics can induce a stress response pathway altering glucose and cortisol levels, which is potentially tied to behavioral changes in stress phases.

Nara Loca Abadi is a company in recycling industry. 

They are highly concerned on reducing microplastics and also plastic waste by giving it second life through plastic recycling. 

Check this website https://www.naraloca.com . They are a recycled plastic specialist that promotes the use of recycled PET flakes, recycled PET chips, recycled PP & HDPE granules to various plastic and polyester manufacturers.

#CreatingNewLife #Recycled #Polyester #RecycledPET #RecycledPolyester #Polyester

23 views0 comments